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The oscillation of a bubble has many vibrational modes, contributing to di!erent portions
in acoustic scattering. Without approximations a priori, an hydrodynamic approach is
applied to investigate acoustic scattering by a bubble in water, taking into account the heat
exchange and viscosity. The scattering function is derived for a wide range of frequencies.
Examples are shown to illustrate the thermal and viscous e!ects on sound scattering.
Comparison is made with three existing models. While these models are known not to be
applicable for high frequencies, it is shown here that even in the low-frequency region, there
are also noticeable discrepancies between the exact solution and the three existing models
with regard to the scattering properties such as the scattering cross-section, and the quality
factor of resonant peaks. By numerical simulation, we claim that the discrepancies may be
due to the incomplete consideration of the thermal exchange process in the previous models.
The approach presented here is valid for any other #uid enclosure in liquids.

� 2002 Elsevier Science Ltd.
1. INTRODUCTION

Acoustic scattering by a spherical air bubble in liquids has been studied intensively over the
past years, as it plays a signi"cant role in a variety of situations of great interest, such as
wave propagation in upper ocean surfaces, generation of ambient noise in the ocean, and
modelling sound scattering by "sh [1}11]. When a bubble is much smaller than the
wavelength, the acoustic scattering is dominated by the pulsating mode, and the scattering
function can be approximated as isotropic and is given by [9]
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where R
�
is the bubble radius at equilibrium, �

�
is the e!ective natural frequency of bubble

vibration,� is the driving frequency, and �
�
, �
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, �

�
refer to the damping constants due to the

acoustic radiation, viscous, and thermal e!ects respectively.
In the early works, the thermal and viscous e!ects were neglected [8, 9]. Later, it was

recognized that the sound attenuation due to bubbles in water is very important and the
attenuation is contributed signi"cantly by the thermal and viscous e!ects. This stimulated
extensive studies of the energy dissipation by bubbles [2, 4}7]. The main approximations in
the previous research are as follows. (1) Only pulsatory vibration of the bubble is
considered. (2) The pressure is assumed to be uniform inside the bubble, i.e., the inertia of
the gas is negligible. (3) The temperature of the bubble wall remains unchanged during
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pulsation, i.e., the thermal conductivity and heat capacity of the surrounding liquids are
assumed to be in"nite. These approximations were necessary perhaps because of the
following reasons. First, it had been di$cult to include thermal and viscous e!ects in higher
order modes. Second, the complexity involved in the dynamics of the gas}liquid interaction
made it almost impossible to express the results in an explicit form. Third, in most practical
cases, higher order modes are negligible. Due to these limitations, the formula expressed in
equation (1) has been restricted to low-frequency acoustic scattering.

From the scienti"c point of view, however, the understanding of the problem is never
complete. The parametric validity of the presumptions made in previous works has not yet
been justi"ed by an exact approach. Because of this, an exact solution for the bubble
scattering, incorporating all damping e!ects in all vibrational modes, is highly desirable.
Not only that, the recent research has showed that in a number of applications such as
Albunex bubbles [12], higher order modes do show some signi"cance, particularly for not
too low frequencies. Furthermore, an exact solution can serve as a building block in the
study of more complicated situations.With the progress of modern experimental techniques
for manipulating a single bubble, the accurate reexamination of the problem of acoustic
scattering by a bubble becomes possible. All these motivated us to study the problem
further. Unlike previous approaches, we will not make any approximation a priori; instead
we attempt to solve the problem rigorously.

In this paper, the principles of #uid mechanics are used to derive a complete set of
equations which determines the acoustic scattering by a single gas-"lled bubble in water.
The formulation is exact and valid for any frequency and takes into account the thermal
and viscous e!ects in all vibrational modes. For the special case of low-frequency scattering,
numerical results are compared with three existing models, namely, Devin's model [4] and
two models from references [2, 3]. The organization of the paper is as follows. In section 2,
we derive the exact solution, then brie#y review and summarize di!erent approaches and
results. In section 3, some numerical comparison is shown. The paper is concluded by a brief
summary in section 4.

2. THEORIES

In this section, we "rst present the exact approach. Then the key concepts and
approximations in three previous models will be brie#y reviewed. To make a direct
comparison, we re-arrange the physical quantities in the three models in terms of the
de"nitions and notations in the present work.

2.1. EXACT THEORY

The sound scattering by a #uid object can be studied rigorously from the #uid mechanics.
We follow the approach in references [13, 14] to derive an exact formula for the scattering
function of a bubble in boundless liquids incorporating the thermal and viscous damping
e!ects. In the long-wavelength limit, we cast the formula in a form similar to equation (1),
from which the damping constants and the e!ective natural frequency are identi"ed.

As the bubbly liquid consists of both gas and liquid phases, the conservation laws,
including momentum, mass and energy conservation, should be satis"ed in the two phases
separately. The momentum conservation is given by [14]
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where � is the #uid density. In the above, �
��
"�v
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v
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is momentum #ux density tensor.

The term �v
�
v
�
is from mass transfer and �

��
is the stress tensor including both shear and

normal stresses given by
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where v is the #uid velocity, p is the pressure, � is the shear viscosity, and a summation over
repeated indices is implied. The conservation law of mass is described by
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The heat energy transfer is governed by [14]
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where ¹ is the absolute temperature, s is the speci"c entropy, 	 is the thermal conductivity.
Equation (5) states that the heat gain or loss in a unit #uid volume, i.e., the term on the
left-hand side, results from the viscosity and thermal exchange represented by the two terms
on the right-hand side. Equations (2), (4), and (5) contain "ve scalar components with seven
unknown quantities (�, s, ¹, v, p). To solve for these quantities, two additional
thermodynamic relations determining the state of the #uid must be invoked [15]:
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and
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where 
 is the ratio of speci"c heats, c is the adiabatic sound speed, c
�
is the speci"c heat at

constant pressure, and � is the volume thermal expansion coe$cient of the #uid de"ned as
�"!(1/�) (��/�¹)

�
.

For an incident wave of small amplitude, we can linearize the above equations by writing
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and for the initially static #uid

v"v���, (9)

where the quantities with subscript &&0'' refer to the physical quantities at equilibrium and
those with superscript &&(1)'' denote the perturbed physical quantities. Substituting equations
(8) and (9) with equations (6) and (7) into equations (2)}(5), the linearized expressions are
derived as
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and
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where 

�
is the thermal di!usivity de"ned as 	

�
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.
The velocity "eld can be further decomposed into a compressional scalar potential and

a rotational vector potential as

v ���"�����#������. (13)

With an harmonic incident wave of angular frequency �, equations (10)}(13) become
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and the Helmholtz equation for the velocity vector potential ���� is

(� �#k�
�
)����"0, (16)

where k
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is the viscous wave number, and �
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�) is the penetration

depth of the viscous wave. In the above derivation, the common time factor e���� has been
dropped.

To solve equation (14), the normal mode analysis commonly used in solving coupled
oscillator problems in classical mechanics should be employed. We seek the solutions in the
form

����"Af� , ¹���"Bf� , (17)

where f� is the Laplacian eigenfunction corresponding to the eigenvalue �, that is,

� �f�"�f� . (18)

Substituting equation (17) into equation (14), the eigenvalue problem can be solved as
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In addition, the axisymmetric solution to equation (18) in the spherical co-ordinates can
be written as
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where S
�
is a spherical cylindrical function of order n, P

�
is the Legendre polynomial of

degree n, k�
���

"!�
���

, and r, � are co-ordinates of the spherical co-ordinate system (r, �, �)
whose origin is at the center of the bubble and the z- axis lies in the propagation direction of
the incident wave.

By equations (19) and (20), the general solutions to the scalar velocity and temperature
"elds in equation (14) are derived as follows. The velocity scalar potential "eld is given by
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and the temperature "eld is written as
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where A
��

and A
��

are unknown coe$cients to be determined.
As for the solution to equation (16), we can solve it with the following physical

considerations. As the system is axisymmetric, the magnitude of the vector function ����

must be independent of azimuthal angle �, and the vector itself points to the azimuthal
direction. Therefore, the solution to equation (16) is given by

����"eL
(

	
�
�
�

C
�
S
�
(k

�
r)P�

�
(cos �), (23)

where eL
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is the azimuthal unit vector of the spherical co-ordinate system, P�
�

is the
associated Legendre polynomial of the "rst order and degree n, and C

�
is an unknown

coe$cient to be determined.
From equations (21)}(23), we notice that three kinds of waves are involved in the

problem. The wavenumbers k
�
, k

�
and k

�
correspond to the compressional, thermal and

viscous waves respectively. To clarify this, we consider the case where the heat conduction is
very small. In this case, the thermal characteristic length scale must be much shorter than
the compressional length scale, that is, ��

�
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�. In this limit, with equations (15) and (19),
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penetration depth of the thermal sound wave. Judging from the forms of k
�	

and k
�	
, we

know that the former is the wavenumber of sound waves in a #uid; this sound wave is due to
the compressibility of the #uid. The latter is the wavenumber of the so-called thermal sound
wave. It is known that the thermal sound wave decays more rapidly along the path through
the #uid than the compressional sound wave. Therefore, for the usual case that the bubble is
placed far away from the acoustic source, the thermal wave incidence caused by thermal
conduction from the acoustic source can be neglected. From equations (21)}(23), the choice
of S

�
depends on the physical conditions. Inside the bubble, the spherical Bessel function of

"rst kind j
�
is chosen to avoid divergence, whereas the spherical Hankel function of "rst

kind h���
�

is chosen for the scattered waves outside the bubble. In this way, the scalar
potential for the plane incident wave can be written as
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in which � is the wave amplitude. The incident temperature "eld is given from equation (22):

¹���



"

i�
�
(�

�
!k�

�
)

��
�

	
�
�
�

A
�
j
�
(k

�
r)P

�
(cos �). (26)

Outside the bubble, the scattering scalar potential from equation (21) is
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and the scattering vector potential from equation (23) is derived as
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and the scattering temperature "eld is obtained from equation (22) as
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Similarly, for the bubble interior, the scalar potential is written as

�I ���"
	
�
�
�

A
�
[�J

��
j
�
(kI

�
r)#�J

��
j
�
(kI

�
r)]P

�
(cos �), (30)

the velocity vector potential "eld is given by
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the temperature "eld is given by
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where the tilde denotes the bubble interior.
To determine the unknown coe$cients �

�����
and �J

�����
in equations (27)}(32), we invoke

the usual boundary conditions that the velocity, stress, temperature and heat #ux are
continuous across the bubble surface. These conditions are expressed as
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where R
�
is the equilibrium bubble radius, ����

��
and ����

�� are stress tensors in the spherical
co-ordinates,P

��
is the Laplace pressure due to surface tension,P

�
is the hydrostatic pressure

in the surrounding liquid, and PI
�
is the equilibrium gas pressure inside the bubble. As

mentioned in reference [16], equations (35) and (36) are not convenient to use. To proceed
further, we rewrite them in the following forms:
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where ���� and �� ��� are the magnitude of vector potential ���� ) eL
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The perturbed surface of the bubble is represented as
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where � is the surface tension. In addition, at the gas}liquid interface of the bubble, the
radial velocity on either side of the bubble equals the velocity of the surface. Subsequently,
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Therefore, substituting vJ
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in equations (30) and (31) into equation (44), one can get the

expression
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where the symbol j�
�
refers to the "rst derivative of the spherical Bessel function of "rst

kind. Substituting the modal series solutions into the above boundary conditions, six



730 C.-C. WANG AND Z. YE
independent equations are obtained and can be cast into the following matrix form:
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The detailed expressions for the matrix elements are given in Appendix A. Because all the
elements in matrices ¹ and M are known, the unknowns �

�����
, and �J

�����
are completely

determined. Then we can compute the scattering function and cross-section for all modes.
First, the incident scalar potential for the plane wave is expanded as
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where � is the incident wave amplitude. In the far "eld, the contribution of the scattering
wave from thermal sound wave part is negligible, therefore, �k
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asymptotic form for the spherical Hankel of "rst kind at �k
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scattering wave is derived as
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Thus, the scattering function is derived as
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and the total scattering cross-section is (see Appendix B)
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For acoustic scattering by a bubble, equations (46), (50), and (51) present the complete
solutions which incorporate the radiative, thermal, viscous, and surface tension e!ects on all
modes for any frequency.

To compare the existing models which only considered the lowest vibrational mode, we
consider the long-wavelength limit in the following. Under this condition, the pulsating
mode n"0 dominates, and the scattering function and cross-section are derived by keeping
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the n"0 term in equations (50) and (51), respectively:
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To derive the e!ective natural frequency and the damping constant, we cast equation (52)
into a form similar to equation (1) and obtain
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where Re[)] indicates the real part and Im[)] the imaginary part. Later we numerically
compute each damping constant (radiative, viscous, and thermal damping) by turning o!
the other contributions.

2.2. DEVIN'S MODEL

The study of Devin [4] is a benchmark on the damping mechanisms of a pulsating
bubble. He gave a rather concise review on the damping mechanism and on experimental
methods determining the damping e!ects at resonance. The damping constants and natural
frequency are analytically derived at resonance under several approximations. Speci"cally,
in derivation of the thermal damping constant, Devin used the following main
approximations. (1) Inside the bubble, both the density and pressure are assumed uniform
(the inertia of gas are neglected) while keeping temperature inhomogeneous inside the
bubble. (2) The temperature is constant at the gas}liquid interface (in"nite thermal
conductivity for the ambient liquid). Eller [5] further generalized Devin's arguments to
examine the damping of a bubble driven both at resonance and away from resonance. Clay
and Medwin recollected the results obtained by Eller in reference [1]. The derived results
are summarized in Appendix C.

2.3. PROSPERETTI'S MODELS

2.3.1. Model I

In 1976, Prosperetti proposed a model on thermal e!ects and dampingmechanisms in the
forced oscillation of a gas bubble [2]. The author aimed at giving a straightforward
approach and presented the results in analytically accessible forms. The complicated
thermal interaction of the bubble with surrounding liquid was simpli"ed by the polytropic
equation of state for gas inside the bubble. The polytropic equation of state reads
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Summary of di+erent models

Models Devin [1, 4, 5] Prosperetti I [2] Prosperetti II [3] Exact
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equation (62) equation (63) equation (66) equation (55)

Approximations made
Modes considered Pulsatory Pulsatory Pulsatory All modes
Pressure inside the bubble Uniform Non-uniform Uniform Non-uniform
Bubble surface temperature Fixed Fixed Fixed Changable
Equation of state for gas Ideal Polytropic Polytropic Ideal
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where P is the instantaneous pressure of the gas inside the bubble, R is the instantaneous
bubble radius, �

�
is the e!ective viscosity caused by thermal dissipation, and 	 is the e!ective

polytropic exponent ranging from 1, representing an isothermal process, to 
J
�

for the
adiabatic process. It is shown that both the e!ective polytropic exponent and thermal
damping constant depend on the driving frequency of incident pressure wave. The derived
formulas are collected in Appendix C.

2.3.2. Model II

Later, Prosperetti et al. published another paper on the non-linear bubble dynamics [3].
After a careful order of magnitude analysis, the authors made the following assumptions. (1)
The pressure is spatially uniform inside the bubble. (2) The bubble wall temperature remains
unperturbed. Then, in the limit of small amplitude, they linearized the governing
hydrodynamic equations. The results are also summarized in Appendix C.

2.4. SUMMARY OF DIFFERENT MODELS

For the sake of the reader's convenience, we summarize the di!erent models in Table 1.

3. COMPARISON AND NUMERICAL RESULTS

We now proceed to compare numerical results for the di!erent models. We use the
following convention: &&Devin'' refers to Delvin's model, &&Prosperetti I'' refers to
Prosperetti's "rst model, &&Prosperetti II'' refers to Prosperetti et al.'s second model, and the
abbreviation &&Exact'' refers to the present theory.

First, the frequency response of the scattering cross-section, damping constant, and
e!ective natural frequency are compared for di!erent bubble sizes with particular attention
paid to the thermal damping because of its importance in the energy dissipation. Then we
examine the scattering properties at resonance for various bubble sizes. In the present
theory, the normalized scattering cross-section is numerically obtained from equation (51),
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while the cross-section from other models can be equivalently written in the form

�
�
"4�R�

�
��/[��

�
!��)�#4��

�
��], (57)

with �
�
and �

�
being given above respectively. In this section, we discuss the special case of

an air bubble in water. The parameters used for water at room temperature and one
atmosphere are:

P
�
"1)01�10� N/m�, ¹

�
"298 K, �

�
"1000 kg/m�, 	

�
"0)58 J/(smK), �

�
"10��Pa s,

C
���

"4000 J/kg K, 

�
"1)007, �

�
"2)1�10�� K��, c

�
"1485 m/s.

For air,

	J
�
"0)034 J/(m sK), �J

�
"1)8�10��Pa s, CI

���
"1000 J/kgK,


J
�
"1)40, �J

�
"3)3�10��K��, M"28)9�10�� kg,

and the surface tension for air}water interface,

�"0)073 kg/s�.

Moreover, the adiabatic sound speed and air density inside the bubble are determined from
the ideal gas equation of state as

�J
�
"

PI
�
M

R
�
¹
�

, cJ
�
"�


J
�
PI
�

�J
�

, (58)

with

PI
�
"P

�
#

2�
R

�

.

In Figure 1, the plots for the reduced scattering cross-section versus frequency in the
Rayleigh scattering and geometric regimes are shown for the case of bubble radius
R

�
"10 �m respectively. From these "gures, we observe the following. In low-frequency

limit (i.e., Rayleigh regime), we observed that all the models and ours satis"ed the Rayleigh
scattering relation (�

�
J��). However, Devin's model is only qualitatively correct and

predicts a much smaller scattering cross-section.
At the high-frequency end (i.e., geometric regime), our results deviate from the other three

models. The reason is that the high order vibrational modes of the bubble become
important at the high-frequency end, and thus the other models merely based on the
pulsating mode are no longer valid. Hereafter, we de"ne a critical frequency as the
frequency above which the response of the bubble cannot be represented by the pulsating
mode only with the error tolerance of 10%. For R

�
"10 �m, the high order modes are not

negligible above the critical frequency �
	�

"6�10� (1/s). For R
�
"100 and 1 �m cases not

shown here, the derived critical frequencies are �
	�

"6�10
 (1/s) and �
	�

"6�10� (1/s)
respectively. In later discussions, we will restrict our attention to the frequency regime in
which pulsating mode dominates. Second, the discrepancies between these models also exist
near the resonance for these sizes. Therefore, the calculated natural frequency and damping
constants from these models may di!er.

To show the di!erence near resonant scattering, we present the results in Figure 2. From
these "gures, we observe the following features. (1) The results from &&Devin'' and



Figure 1. Reduced scattering cross-section versus frequency: **, Exact; #, Prosperetti II; ) , Prosperetti I;
}} } }} }, Devin.
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&&Prosperetti I'' are in good agreement with that from &&Exact'' only for large bubble sizes,
such as R

�
"100 �m. For R

�
"10, 1 �m, &&Devin'' and &&Prosperetti I'' overestimate the

scattering cross-section by 5)5 and 5% compared to &&Exact'' respectively. (2) &&Prosperetti
II'' and &&Exact'' are in good agreement in all these cases.

To search for reasons of the di!erences between these models, we examine the e!ective
natural frequency and the thermal damping constant in Figures 3 and 4 separately. In
Figure 3, the plots of the e!ective natural frequency versus angular frequency are shown for
R

�
"100, 10 and 1 �m. We notice that the e!ective natural frequency increases

monotonically with frequency for all these bubble sizes. We show that all the e!ective
natural frequencies from &&Prosperetti II'', &&Prosperetti I'', and &&Devin'' agree fairly well for
the entire frequency range. It is also noticed that the results from &&Exact'' coincide with that
from these models only for frequencies below the resonance. Di!erences are only observed



Figure 2. Reduced scattering cross-section near resonance: **, Exact; #, Prosperetti II; ) , Prosperetti I;
}} } }} }, Devin.
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for the frequencies above the resonance and are prominent for smaller bubble size in these
"gures. A reason for the discrepancy is that is their models the gas inertial e!ect is not
considered. When the e!ect is taken into account, the assumption that the pressure is
uniform inside the bubble is no longer valid. At high frequencies, there is not enough time
for the air to distribute uniformly inside the bubble. As a result, the actual internal energy of
the air is higher than that assumed in the uniform state, thereby yielding a higher e!ective
natural frequency than in the uniform assumption. Indeed, we observe that by reducing the
gas density, the curves from &&Exact'' are getting closer and closer to that of other models.

In Figure 4, the plots of the thermal damping constant versus frequency are exhibited. We
observe the following features. First, the thermal damping constant from &&Prosperetti II'' is
in good agreement with that from &&Exact'' for R

�
"100, 10 and 1 �m. Second, &&Devin'' and



Figure 3. E!ective natural frequency versus frequency:**, Exact; #, Prosperetti II; ) , Prosperetti I; } } }} } },
Devin.
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&&Prosperetti I'' underestimate the thermal damping constant, and the di!erence becomes
larger for smaller bubble size. We also examine the viscous damping and radiative damping
constants from these models, yielding good agreements. From these comparisons, we arrive
at the following conclusions. (1) The previous three models are no longer valid for higher
frequencies at which the higher order modes in the bubble's oscillation become dominant.
(2) &&Devin'' underestimates the scattering cross-section in Rayleigh scattering regime. (3)
These models only agree with each other for large bubble size up to R

�
"100 �m. (4) The

previous three models do not predict the correct thermal damping constant for frequencies
ranging between the resonant frequency and critical frequency.

For practical interest, we now examine the scattering properties at resonance for the
bubble radius ranging from 1 to 100 �m. In Figure 5, the plot of the normalized scattering



Figure 4. Thermal damping constant versus frequency: **, Exact; #, Prosperetti II; ) , Prosperetti I;
}} } }} }, Devin.
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cross-section at resonance as a function of bubble radius is shown for di!erent models. The
following features are observed. First, only &&Prosperetti I'' predicts a monotonically
increasing curve, in contrast to the other predictions. Second, &&Devin'' overestimates the
resonant scattering cross-section (RSCS) for bubbles smaller than 50 �m. Third, results
from &&Prosperetti II'' are in reasonably good agreement with that from &&Exact''.

In Figure 6, the thermal damping constant at resonance as a function of bubble radius
is displayed. We notice that the thermal damping constant decreases monotonically with
the bubble radius for all models. &&Prosperetti I'' overestimates the thermal damping
constant, while &&Devin'' underestimates that for bubble sizes less than 10 �m. Once again,
the thermal damping constant from &&Prosperetti II'' is in good accordance with the exact
solution.



Figure 5. Reduced resonant scattering cross-section versus bubble radius: **, Exact; #, Prosperetti II; ) ,
Prosperetti I; } } } } } }, Devin.

Figure 6. Thermal damping constant at resonance versus bubble radius: **, Exact; #, Prosperetti II; ) ,
Prosperetti I; } } } } } }, Devin.
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Figure 7. Resonant frequency versus bubble radius:**, Exact; #, Prosperetti II; ) , Prosperetti I; } } }} } },
Devin.

ACOUSTIC SCATTERING BY BUBBLE IN WATER 739
In Figure 7, we show the resonant frequency versus bubble radius. It is noticed that the
resonant frequency decreases with the bubble radius for all models. And the results from
these models agree with each other fairly well. From the above discussion at resonance, we
arrive at the following conclusion. First, the previous models can predict the accurate
resonant frequency position for di!erent bubble sizes. Second, &&Devin'' overestimates the
RSCS and predicts a resonant peak with higher Q (quality factor) for bubble radius smaller
than 50 �m. Third, the RSCS predicted by &&Prosperetti I'' would be underestimated for
bubbles smaller than R

�
"15 �m and overestimated for bubbles larger than that.

Moreover, lower Q peaks are predicted for small bubble size. Fourth, &&Prosperetti II'' is in
excellent agreement with out results at resonance.

4. CONCLUSION

In this paper, we "rst derived an exact solution for sound scattering by an air bubble in
water for all modes. By applying to the cases corresponding to di!erent scattering regimes,
we then compared the acoustic scattering properties with that obtained from Devin's and
Prosperetti's approaches. The following remarkable results are drawn. In the Rayleigh
scattering regime, we show that &&Devin'' will greatly underestimate the scattering
cross-section for bubble sizes considered in this paper while the others show good
agreement with &&Exact'' quantitatively. In the geometric scattering regime, it was shown
that the previous models are no longer applicable above certain frequencies. For the cases of
bubble radii R

�
"100, 10 and 1 �m, the critical frequencies are 6�10
, 6�10�, and

6�10� (1/s) respectively. In the bubble's resonant regime, the limitations of previous works
on thermal exchange process which is often masked by polytropic equation of state inside
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the bubble have been shown. The conclusions are drawn as follows. (1) All models predict
the accurate resonant peak position for all the bubble sizes. (2) &&Devin'' overestimates the
RSCS and predicts a resonant peak with higher Q (quality factor) for bubble radius smaller
than 50 �m. (3) The RSCS predicted from &&Prosperetti I'' would be underestimated for
R

�
(15 �m while being overestimated for larger bubbles. (4) &&Prosperetti II'' is in excellent

agreement with &&Exact'' at resonance. In addition, the abnormal thermal exchange process
for a bubble in water for frequencies above resonance is discussed. The fact that the present
exact results match that from &&Prosperetti II'' not only provides a further justi"cation of
their approach, but also gives us con"dence in our approach. The fair agreement shows that
themodel &&Prosperetti II'' is approximate, yet captures the essence of the physical process in
the valid range of frequencies. The present results can be extended to a wide range of
frequencies and to frequency ranges beyond the applicability of the previous approaches.
From the derivation, it is also clear that the approach presented in this paper is also valid
for any other #uid enclosures in liquids.
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APPENDIX B

B.1. CALCULATION OF SCATTERING CROSS-SECTION

The scattering cross-section is related with scattering function by

�
�
"� � f

�
(�) ��d�.

With the aid of the orthogonal relation for Legendre polynomial

�
�

��

P
�
(x)P

��
(x) dx"

2

2n#1
�
���

,

where x"cos �, � is the solid angle, and

�
���

"1, if n"n�,

�
���

"0, if nOn�,

the scattering cross-section in equation (51) is derived.

APPENDIX C

C.1. DEVIN'S MODEL

The natural frequency is given by

�
�
"

1

R
�
�
3
J

�
b�P

�
�J
�
�
���

, (C.1)
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where �J
�
is the gas density, 
J

�
is the gas speci"c heat ratio, andP

�
is the equilibrium pressure

in the ambient liquid, and
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X

sinhX!sinX

coshX!cosX�
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in which 	J
�
is the gas thermal conductivity,CI

���
is the gas speci"c heat at constant pressure.

The viscous damping constant is derived as

�
�
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�
/(�

�
R�

�
), (C.2)

the acoustic radiation damping constant is given by
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��R
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, (C.3)

and the thermal damping constant is represented as
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d

2b
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�
. (C.4)

In the above, d/b is given by

d

b
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X�(coshX!cosX)#3(
J
�
!1)X (sinhX!sinX)�.

C.2. PROSPERETTI'S MODELS

Model I

In this model, the analytical forms for the viscous and radiative damping constants are
identical to that in Devin's model. The thermal damping constant, however, is given by
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) Im(�), (C.5)

the e!ective polytropic exponent is written as
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and the e!ective natural frequency is derived as
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whereM is the molecular weight of the gas within the bubble, CI
���

is the gas speci"c heat at
constant volume, DI

���
"	J

�
/�J

�
CI

���
is the gas thermal di!usivity, R

�
is the universal gas

constant, ¹
�

is the absolute equilibrium temperature of the surrounding liquid, and
k"	

�
/	�

�
is the thermal conductivity ratio of the liquid to gas. In the above,
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is the thermal di!usivity of the surrounding liquid.

Model II

In this model, the calculated radiative and viscous damping constants remain unchanged,
while the revised thermal damping constant is given by
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and the e!ective natural frequency is derived as
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where DI
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"	J
�
/�J

�
CI

���
is the thermal di!usivity of gas at constant pressure.
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